Search Constraints
Number of results to display per page
Results for:
Design and Architecture
Remove constraint Design and Architecture
Search Results
-
MOOC
Cities are first and foremost built for people, and in today’s world, people produce large amounts of valuable data, thus contributing to what we call “smart cities." As almost every building and every city is a prototype, these communities are in the early stage of development and require specific attention and expertise as we advance. Smart cities, such as Zurich and Boston, consist of human-made structures or environments that are, in some capacity, monitored, metered, networked and controlled. With this functionality, combined with stationary sensors and mobile devices, data and information have become the new building materials of future cities. Using this data, citizens are now beginning to influence the design of future cities and the re-design of existing ones. In this architecture course, you will learn the basics of information cities and urban science research, as well as how dynamic behavior and citizen-driven learning differentiate the responsive city from the smart city. The cities we present and develop in this course use the stocks and flows of information as the main drivers of change. To deepen your knowledge of smart cities and give a perspective on the future of these cities, we also introduce the concept of citizen design science, a combination of citizen science, urban design, and cognitive design computing. Participants will furthermore have unique access to a design research platform for citizen design science. The intelligent use of data and information is at the core of this course, and these concepts will be the next generation of participatory design and design computing environments.
- Subjects:
- Building Services Engineering and Building and Real Estate
- Keywords:
- Smart cities Cities towns -- Effect of technological innovations on City planning
- Resource Type:
- MOOC
-
MOOC
Responsive cities define the future of urbanization. They evolve from smart cities, with a fundamental difference: The citizens move from the center of attention to the center of action. Responsive citizens use smart technology to contribute to planning, design and management of their cities. Responsive cities are about bringing cities back to their citizens. Responsive cities change the way the technology of a smart city is used. The first Smart Cities were technology driven and they produced large amounts of data from fixed or centrally controlled sensors. But by now, the citizens and their mobile phones have taken the leading role in direct data generation. Rather than using data that are centrally collected and stored, you will see platforms on which the citizens place the data and the information they decide to share. With this, your own responsibility becomes a foundation of a Responsive City. Cities evolve from being smart to being responsive. To demonstrate the potential of Responsive Cities, this course will define the concept of Citizen Design Science, a combination of Citizen Design, Citizen Science and Design Science. Experts, citizens and scientists participate in Citizen Design Science. This approach is still in an early stage of development, but with the Responsive Cities Massive Open Online Course, you will be ahead in exploring and defining its possibilities. ‘Responsive cities’ is the fourth edition of the ‘Future Cities’ series on urban MOOCs. The ‘Future Cities’ series is the first and complete series of urban courses dealing with the design, management and transformation of cities for their sustainable and resilient future. With every edition, the series becomes more interactive. It increasingly empowers citizens around the world to become part of the development of their own cities, especially in those places where this knowledge is needed most. Therefore, the course is inclusive for every individual interested in the planning, construction, redevelopment and management of future cities. The course is open to anyone regardless of background, skills, knowledge, or age.
- Subjects:
- Building Services Engineering and Building and Real Estate
- Keywords:
- Smart cities Sustainable development Cities towns -- Effect of technological innovations on City planning
- Resource Type:
- MOOC
-
Courseware
The course gives the technological backgrounds of treatment processes applied for production of drinking water. The treatment processes are demonstrated with laboratory experiments. Study goals: Knowledge of technological basics and design parameters of drinking water treatment processes.
- Subjects:
- Environmental Engineering and Hydraulic Engineering
- Keywords:
- Water -- Purification Drinking water -- Purification
- Resource Type:
- Courseware
-
Courseware
This course discusses the evolution and role of urban public transportation modes, systems, and services, focusing on bus and rail. It covers various topics, including current practice and new methods for data collection and analysis, performance monitoring, route design, frequency determination, vehicle and crew scheduling, effect of pricing policy and service quality on ridership.
- Subjects:
- Transportation
- Keywords:
- Urban transportation -- Management Local transit Urban transportation -- Planning
- Resource Type:
- Courseware
-
MOOC
Modeling, control design, and simulation are important tools supporting engineers in the development of automotive systems, from the early study of system concepts (when the system possibly does not exist yet) to optimization of system performance. This course provides a theoretical basis to model-based control design with the focus on systematically develop mathematical models from basic physical laws and to use them in control design process with specific focus on automotive applications. You will learn the basics of mathematical modeling applied to automotive systems, and based on the modeling framework different type of controller and state estimation methods will be introduced and applied. Starting from a pure state-feedback concept down to optimal control methods, with special attention on different automotive applications. Different methods for state reconstruction is also introduced and discussed in the course. Exercises play an important rolethroughout the course. This course is aimed at learners with a bachelor's degree or engineers in the automotive industry who need to learn more about mathematical modelling of automotive systems.
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Automobiles -- Design construction -- Mathematical models Motor vehicles -- Dynamics
- Resource Type:
- MOOC
-
Video
This video explains why ridges move, and other musings on thermal movement of large civil works. Most people have a certain intuition about thermal expansion, but you may not have considered how engineers design to accommodate it on large civil structures. The video gives a quick overview on this important consideration that engineers must account for when designing infrastructure like pipelines, bridges, and even sidewalks.
- Subjects:
- Structural Engineering
- Keywords:
- Structural analysis (Engineering) Expansion (Heat)
- Resource Type:
- Video
-
Video
This video discusses a few modern techniques that help improve design life of concrete, including roller compacted concrete (RCC) and water reducing admixtures (superplasticizers). There are a whole host of differences between modern concrete and that of the western Roman empire that I didn’t have time to go into, including freeze/thaw damage.
- Subjects:
- Building and Real Estate
- Keywords:
- Concrete construction Roller compacted concrete Concrete -- Additives Concrete
- Resource Type:
- Video
-
Video
Engineers need to be able to predict how water will behave in order to design structures that manage or control it. And fluids don’t always behave the way you’d expect. On this episode, we’re talking about one of the most interesting phenomena in open-channel flow: the hydraulic jump.
- Subjects:
- Hydraulic Engineering
- Keywords:
- Hydraulics Hydraulic jump
- Resource Type:
- Video
-
MOOC
In this course, you will obtain some insights about marketing to help determine whether there is an opportunity that actually exists in the marketplace and whether it is valuable and actionable for your organization or client. Week 1: Assess methods available for creating quantitative surveys, along with their advantages and disadvantages. Identify the type of questions that should be asked and avoid unambiguous survey questions. Week 2: Design, test, and implement a survey by identifying the target audience and maximizing response rates. You will have an opportunity to use Qualtrics, a survey software tool, to launch your own survey. Week 3: Analyze statistical models that can be applied to your marketing data, so that you can make data-driven decisions about your marketing mix. Week 4: Predict most likely outcomes from the marketing decisions and match the type of analysis needed for your business problem. Take Quantitative Research as a standalone course or as part of the Market Research Specialization. You should have equivalent experience to completing the second course in this specialization, Qualitative Research, before taking this course. By completing the third class in the Specialization, you will gain the skills needed to succeed in the full program.
- Subjects:
- Marketing and Statistics and Research Methods
- Keywords:
- Quantitative research Marketing research
- Resource Type:
- MOOC
-
Video
In many of the world’s tallest skyscrapers, there’s a secret device protecting the building and the people inside from strong motion due to wind and earthquakes. Did you know you can tune a skyscraper just like a guitar? In this video, we’re comparing theory to the real world for tuned mass dampers. Luckily this tech is simple enough that we can model it right in the garage. As silly as this little experiment looks, it’s actually not that far off from what engineers do in the real world (maybe without the googly eyes). The design phase for just about every major building includes some physical scale model tests. This video shows that the tuned mass damper is a great example of elegance in engineering.
- Subjects:
- Structural Engineering
- Keywords:
- Tuned mass dampers Buildings -- Earthquake effects Buildings -- Vibration
- Resource Type:
- Video