Search Constraints
Number of results to display per page
Results for:
Machine Learning
Remove constraint Machine Learning
« Previous |
31 - 36 of 36
|
Next »
Search Results
-
Courseware
This course aims to give students the tools and training to recognize convex optimization problems that arise in scientific and engineering applications, presenting the basic theory, and concentrating on modeling aspects and results that are useful in applications. Topics include convex sets, convex functions, optimization problems, least-squares, linear and quadratic programs, semidefinite programming, optimality conditions, and duality theory. Applications to signal processing, control, machine learning, finance, digital and analog circuit design, computational geometry, statistics, and mechanical engineering are presented. Students complete hands-on exercises using high-level numerical software.
- Subjects:
- Mathematics and Statistics
- Keywords:
- Mathematical optimization Convex functions
- Resource Type:
- Courseware
-
Courseware
This course provides a broad introduction to machine learning and statistical pattern recognition. The course will also discuss recent applications of machine learning, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing. Topics include: supervised learning (generative/discriminative learning, parametric/non-parametric learning, neural networks, support vector machines); unsupervised learning (clustering, dimensionality reduction, kernel methods); learning theory (bias/variance tradeoffs; VC theory; large margins); reinforcement learning and adaptive control.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Pattern perception -- Statistical methods Machine learning
- Resource Type:
- Courseware
-
e-book
The purpose of this book is to provide an up-to-date and systematical introduction to the principles and algorithms of machine learning. The definition of learning is broad enough to include most tasks that we commonly call “learning” tasks, as we use the word in daily life. It is also broad enough to encompass computers that improve from experience in quite straightforward ways. The book will be of interest to industrial engineers and scientists as well as academics who wish to pursue machine learning. The book is intended for both graduate and postgraduate students in fields such as computer science, cybernetics, system sciences, engineering, statistics, and social sciences, and as a reference for software professionals and practitioners. The wide scope of the book provides a good introduction to many approaches of machine learning, and it is also the source of useful bibliographical information.
- Course related:
- COMP4432 Machine Learning
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Machine learning
- Resource Type:
- e-book
-
e-book
Machine learning techniques have the potential of alleviating the complexity of knowledge acquisition. This book presents today’s state and development tendencies of machine learning. It is a multi-author book. Taking into account the large amount of knowledge about machine learning and practice presented in the book, it is divided into three major parts: Introduction, Machine Learning Theory and Applications. Part I focuses on the introduction to machine learning. The author also attempts to promote a new design of thinking machines and development philosophy. Considering the growing complexity and serious difficulties of information processing in machine learning, in Part II of the book, the theoretical foundations of machine learning are considered, and they mainly include self-organizing maps (SOMs), clustering, artificial neural networks, nonlinear control, fuzzy system and knowledge-based system (KBS). Part III contains selected applications of various machine learning approaches, from flight delays, network intrusion, immune system, ship design to CT and RNA target prediction. The book will be of interest to industrial engineers and scientists as well as academics who wish to pursue machine learning. The book is intended for both graduate and postgraduate students in fields such as computer science, cybernetics, system sciences, engineering, statistics, and social sciences, and as a reference for software professionals and practitioners.
- Course related:
- COMP4432 Machine Learning
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Machine learning
- Resource Type:
- e-book
-
Presentation
This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Athens 2011. Comparing frequency counts over texts or corpora is an important task in many applications and scientific disciplines. Given a text corpus, we want to test a hypothesis, such as "word X is frequent", "word X has become more frequent over time", or "word X is more frequent in male than in female speech". For this purpose we need a null model of word frequencies. The commonly used bag-of-words model, which corresponds to a Bernoulli process with fixed parameter, does not account for any structure present in natural languages. Using this model for word frequencies results in large numbers of words being reported as unexpectedly frequent. We address how to take into account the inherent occurrence patterns of words in significance testing of word frequencies. Based on studies of words in two large corpora, we propose two methods for modeling word frequencies that both take into account the occurrence patterns of words and go beyond the bag-of-words assumption. The first method models word frequencies based on the spatial distribution of individual words in the language. The second method is based on bootstrapping and takes into account only word frequency at the text level. The proposed methods are compared to the current gold standard in a series of experiments on both corpora. We find that words obey different spatial patterns in the language, ranging from bursty to non-bursty/uniform, independent of their frequency, showing that the traditional approach leads to many false positives.
- Subjects:
- Computing, Data Science and Artificial Intelligence and Management
- Keywords:
- Computational linguistics Text processing (Computer science) Discourse analysis -- Data processing
- Resource Type:
- Presentation
-
-
Presentation
This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Athens 2011. Hierarchical modeling and reasoning are fundamental in machine intelligence, and for this the two-parameter Poisson-Dirichlet Process (PDP) plays an important role. The most popular MCMC sampling algorithm for the hierarchical PDP and hierarchical Dirichlet Process is to conduct an incremental sampling based on the Chinese restaurant metaphor, which originates from the Chinese restaurant process (CRP). In this paper, with the same metaphor, we propose a new table representation for the hierarchical PDPs by introducing an auxiliary latent variable, called table indicator, to record which customer takes responsibility for starting a new table. In this way, the new representation allows full exchangeability that is an essential condition for a correct Gibbs sampling algorithm. Based on this representation, we develop a block Gibbs sampling algorithm, which can jointly sample the data item and its table contribution. We test this out on the hierarchical Dirichlet process variant of latent Dirichlet allocation (HDP-LDA) developed by Teh, Jordan, Beal and Blei. Experiment results show that the proposed algorithm outperforms their "posterior sampling by direct assignment" algorithm in both out-of-sample perplexity and convergence speed. The representation can be used with many other hierarchical PDP models.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Machine learning Artificial intelligence
- Resource Type:
- Presentation
-
- « Previous
- Next »
- 1
- 2
- 3
- 4