Search Constraints
Number of results to display per page
Results for:
Learning-to-learn
Remove constraint Learning-to-learn
Search Results
-
Courseware
What do collapsed buildings, infected hospital patients, and crashed airplanes have in common? If you know the causes of these events and conditions, they can all be prevented. In this course, you will learn how to use the TU Delft mind-set to investigate the causes of such events so you can prevent them in the future. When, for instance, hundreds of hospital patients worldwide got infected after having gall bladder treatments, forensic engineering helped reveal how the design and use of the medical instruments could cause such widespread infections. As a result, changes were made to the instrument design and the procedural protocols in hospitals. Learning from failure in this case benefitted patient health and safety across the world. After taking this course you will have an understanding of failures and the investigation processes used to find their causes. You will learn how to apply lessons gained from investigating previous failures into new designs and procedures.
- Keywords:
- Forensic engineering Failure analysis (Engineering)
- Resource Type:
- Courseware
-
Courseware
Reduction of energy consumption of buildings is an important step in the move towards a sustainable economy. How can buildings be made net zero energy, in different climates? This course introduces you to zero energy design. It will teach you a stepped approach to design a zero energy climate concept for existing buildings: homes, schools, offices, shops etc. It will demonstrate how an integrated approach, which takes into account both passive measures (such as thermal insulation and sun shading) and active measures (such as heat pumps and photovoltaic panels), can deliver the best results. It will do so by providing you with an overview of possible measures, and through reviewing several case studies of zero energy buildings in the Netherlands, with lessons for other climates as well. Thus, you will learn which measures are most suitable for individual buildings under local climate conditions. This course is for anyone interested in making buildings more energy efficient, who already possess asic technical knowledge.
-
Courseware
Life in the city relies on the smooth operation of urban logistics. Everything from retail to services, construction to waste collection rely on an efficient and reliable freight transport system. However, with the increasing pressures of urbanization, this has to be balanced with the environmental and social impacts caused by transport activity. This is the challenge of City Logistics, a field of study that has significant practical implications for the world and the cities we live in. It is not merely a question of what is involved, but what can be done about urban freight transport to improve it for the sake of economic efficiency, quality of life, and sustainability. From a systematic scientific foundation of the field, this course will take you on a journey to learn how city logistics is understood and practiced in cities around the world. Our instructors, members of a renowned global expert network, will teach you the basics of this highly complex social system. Using their experience in real-world projects, they will illustrate how the knowledge learnt in this course is applied across industry and the public sector. This course caters primarily to university students or professionals working in urban transport infrastructure planning or logistics management. Whether you are simply curious about the topic or you intend to develop a career in these fields, this course will give you the tools you need to understand the complexities of urban freight transport systems. The course emphasizes the theoretical foundation, the rigorous evaluation, and a multi-disciplinary approach to this complex area. Course participants will benefit from numerous case studies of best practice in selected cities around the world, in a variety of business settings. Our emphasis on the global perspective is particularly relevant, since an understanding of local culture and political climate is an important factor in the success of any city logistics intervention. The course will provide an avenue for students to learn from their peers about the challenges faced in their respective cities, and how to apply the principles learned to the challenges faced in their own cities.
- Subjects:
- Transportation
- Keywords:
- Freight freightage Transportation -- Environmental aspects Sustainable development Urban transportation
- Resource Type:
- Courseware
-
Courseware
Products and equipment all around us are made of materials: look around you and you will see phones, computers, cars, and buildings. We face challenges in securing the supply of materials and the impact this has on the planet. Innovative product design can help us find solutions to these challenges. This course will explore new ways of designing products. The design of products is an important aspect of a circular economy. The circular economy approach addresses material supply challenges by keeping materials in use much longer and eventually returning materials for new use. The principle is that waste must be minimized. Products will be designed to last longer. They will be easier to Reuse, Repair, and Remanufacture. The product will eventually be broken down and Recycled. This is Design for R and is the focus of this course. Experts from leading European universities and research organizations will explain the latest strategies in product design. Current design approaches lead to waste, loss of value and loss of resources. You will learn about the innovative ways in which companies are creating value, whilst securing their supply chains, by integrating Design for R. This course is suitable for all learners who have an interest in product design, innovative engineering, new business activity, entrepreneurship, sustainability, circular economy and everyone who thinks that the current way we do things today needs a radical rethink.
- Subjects:
- Environmental Engineering
- Keywords:
- Engineering design Industrial management -- Environmental aspects Sustainable design Remanufacturing
- Resource Type:
- Courseware
-
Courseware
Water is essential for life on earth and of crucial importance for society. Also within our climate water plays a major role. The natural cycle of ocean to atmosphere, by precipitation back to earth and by rivers and aquifers to the oceans has a decisive impact on regional and global climate patterns. This course will cover six main topics: 1. Global water cycle. In this module you will learn to explain the different processes of the global water cycle. 2. Water systems. In this module you will learn to describe the flows of water and sand in different riverine, coastal and ocean systems. 3. Water and climate change. In this module you will learn to identify mechanisms of climate change and you will learn to explain the interplay of climate change, sea level, clouds, rainfall and future weather. 4. Interventions. In this module you will learn to explain why, when and which engineering interventions are needed in rivers, coast and urban environment. 5. Water resource management. In this module you will learn to explain why water for food and water for cities are the main challenges in water management and what the possibilities and limitations of reservoirs and groundwater are to improve water availability. 6. Challenges. In this module you will learn to explain the challenges in better understanding and adapting to the impact of climate change on water for the coming 50 years.
- Subjects:
- Environmental Engineering and Hydraulic Engineering
- Keywords:
- Hydrologic cycle Water-supply -- Effect of global warming on Water-supply -- Management
- Resource Type:
- Courseware
-
Courseware
Learn about urban water services, focusing on conventional technologies for drinking water treatment. This course focuses on conventional technologies for drinking water treatment. Unit processes, involved in the treatment chain, are discussed as well as the physical, chemical and biological processes involved. The emphasis is on the effect of treatment on water quality and the dimensions of the unit processes in the treatment chain. After the course one should be able to recognise the process units, describe their function, and make basic calculations for a preliminary design of a drinking water treatment plant.
- Subjects:
- Environmental Engineering and Hydraulic Engineering
- Keywords:
- Water -- Purification Water treatment plants -- Design construction Drinking water -- Purification Water-supply
- Resource Type:
- Courseware
-
MOOC
Building construction is one of the most waste producing sectors. In the European Union, construction alone accounts for approximately 30% of the raw material input. In addition, the different life-cycle stages of buildings, from construction to end-of-life, cause a significant environmental impact related to energy consumption, waste generation and direct and indirect greenhouse gas emissions. The Circular Economy model offers guidelines and principles for promoting more sustainable building construction and reducing the impact on our environment. If you are interested in taking your first steps in transitioning to a more sustainable manner of construction, then this course is for you! In this course you will become familiar with circularity as a systemic, multi-disciplinary approach, concerned with the different scale, from material to product, building, city, and region. Some aspects of circularity that will be included in this course are maximizing reuse and recycle levels by closing the material loops. You will also learn how the Circular Economy can help to realign business incentives in supply chains, and how consumers can be engaged and contribute to the transition through new business models enabling circular design, reuse, repair, remanufacturing and recycling of building components. In addition, you will learn how architecture and urban design can be adapted according to the principles of the Circular Economy and ensure that construction is more sustainable. You will also learn from case studies how companies already profitably incorporate this new theory into the design, construction and operation of the built environment.
- Subjects:
- Building and Real Estate
- Keywords:
- Construction industry -- Environmental aspects Building materials -- Recycling Sustainable construction
- Resource Type:
- MOOC
-
MOOC
Understanding a city as a whole, its people, components, functions, scales and dynamics, is crucial for the appropriate design and management of the urban system. While the development of cities in different parts of the world is moving in diverse directions, all estimations show that cities worldwide will change and grow strongly in the coming years. Especially in the tropics over the next 3 decades, it is expected that the number of new urban residents will increase by 3 times the population of Europe today. Yet already now, there is an extreme shortage of designers and urban planners able to understand the functioning of a city as a system, and to plan a sustainable and resilient city. To answer questions like: Which methods can contribute to the sustainable performance of a city, and how can we teach this to the next generations, the ETH Future Cities Laboratory in Singapore has produced over the last 3 years many necessary research results. “Future Cities” aims to bring these latest results to the places where they are needed most. The only way to better understand the city is by going beyond the physical appearance and by focusing on different representations, properties and impact factors of the urban system. For that reason, in this course we will explore the city as the most complex human-made “organism” with a metabolism that can be modeled in terms of stocks and flows. We will open a holistic view on existing and new cities, with a focus on Asia. Data-driven approaches for the development of the future city will be studied, based on crowdsourcing and sensing. At first, we will give an overview of the components and dynamics of the future cities, and we will show the importance of information and information architecture for the cities of the future. The course will cover the origins, state-of-the-art and applications of information architecture and simulation. “Future Cities” will provide the basis to understand, shape, plan, design, build, manage and continually adapt a city. You will learn to see the consequences of citizen science and the merging of Architecture and information space. You will be up-to-date on the latest research and development on how to better understand, create and manage the future cities for a more resilient urban world.
- Subjects:
- Building Services Engineering and Building and Real Estate
- Keywords:
- Smart cities Cities towns -- Effect of technological innovations on City planning
- Resource Type:
- MOOC
-
MOOC
Cities are first and foremost built for people, and in today’s world, people produce large amounts of valuable data, thus contributing to what we call “smart cities." As almost every building and every city is a prototype, these communities are in the early stage of development and require specific attention and expertise as we advance. Smart cities, such as Zurich and Boston, consist of human-made structures or environments that are, in some capacity, monitored, metered, networked and controlled. With this functionality, combined with stationary sensors and mobile devices, data and information have become the new building materials of future cities. Using this data, citizens are now beginning to influence the design of future cities and the re-design of existing ones. In this architecture course, you will learn the basics of information cities and urban science research, as well as how dynamic behavior and citizen-driven learning differentiate the responsive city from the smart city. The cities we present and develop in this course use the stocks and flows of information as the main drivers of change. To deepen your knowledge of smart cities and give a perspective on the future of these cities, we also introduce the concept of citizen design science, a combination of citizen science, urban design, and cognitive design computing. Participants will furthermore have unique access to a design research platform for citizen design science. The intelligent use of data and information is at the core of this course, and these concepts will be the next generation of participatory design and design computing environments.
- Subjects:
- Building Services Engineering and Building and Real Estate
- Keywords:
- Smart cities Cities towns -- Effect of technological innovations on City planning
- Resource Type:
- MOOC
-
Courseware
Energy storage will be of major importance when more and more energy is produced using fluctuating renewable sources like wind and solar power. This course concerns two energy storage methods: storage in the form of the artificial fuel hydrogen, and storage in the form of batteries. In the transition to a sustainable-energy future, both hydrogen and batteries will likely play increasingly important roles. Hydrogen has the advantage of effectively limitless scale up potential while batteries have the advantage of high energy efficiency. Methods for sustainable and renewable hydrogen production include solar, wind power, direct photo-electrolysis of water, thermal and nuclear methods as well as biological options. The students will learn about such production methods of hydrogen using renewable energy sources, and separation technologies for clean hydrogen. The application of hydrogen requires cheap, safe, lightweight and easy to handle storage of hydrogen. The course presents current options for storage of hydrogen, including light metal hydrides, large adsorption surface, and nanostructured materials, as well as gaseous and liquid hydrogen storage. It will be explained that the ultimate solution still needs to be found. Students will get an overview of most recent advances and bottlenecks, synthesis and characterization techniques. The electrical energy storage in batteries concerns the principles of (rechargeable) batteries, mainly Li-ion, and the relation of the performance with material properties. The relation between properties at the atomic level with the real life battery performance will be displayed. The principles will be explained in terms of basic electrochemistry and thermodynamics. The course will present recent advantage in the field of Li ion batteries. In addition super-capacitors, allowing fast (dis)charge and based on similar principles, are part of the course.
- Subjects:
- Building Services Engineering, Chemistry, and Environmental Engineering
- Keywords:
- Storage batteries Renewable energy sources Hydrogen as fuel Energy storage Hydrogen -- Storage
- Resource Type:
- Courseware