Search Constraints
Number of results to display per page
Results for:
Search Results
-
Video
This channel contains the complete 8.01x (Physics I: Classical Mechanics), 8.02x (Physics II: Electricity and Magnetism) and 8.03 (Physics III: Vibrations and Waves) lectures as presented by Walter Lewin in the fall of 1999, spring of 2002 and fall of 2004. The 8.01x and 8.02x edX lectures are high resolution (480p) versions of the more commonly seen OCW versions. Some edits were also made by Lewin. 8.03 is the OCW version, also in a 480p resolution. Links to lecture notes, assignments/solutions and exams/solutions are added. Playlists with Help Sessions for 8.01x, 8.02x and 8.03 are also available. They are "mini lectures". The problems discussed in these videos should be apparent after watching the first few minutes. Other playlists show Lewin in various appearances and his Bi-Weekly Physics problems/solutions and several excellent lectures by Feynman and others.
- Subjects:
- Physics and Electrical Engineering
- Keywords:
- Waves Vibration Magnetism Mechanics Electricity Physics
- Resource Type:
- Video
-
e-book
Electromagnetics, volume 2 by Steven W. Ellingson is a 216-page peer-reviewed open textbook designed especially for electrical engineering students in the third year of a bachelor of science degree program. It is intended as the primary textbook for the second semester of a two-semester undergraduate engineering electromagnetics sequence. The book addresses magnetic force and the Biot-Savart law; general and lossy media; parallel plate and rectangular waveguides; parallel wire, microstrip, and coaxial transmission lines; AC current flow and skin depth; reflection and transmission at planar boundaries; fields in parallel plate, parallel wire, and microstrip transmission lines; optical fiber; and radiation and antennas.
- Subjects:
- Electrical Engineering
- Keywords:
- Electromagnetism
- Resource Type:
- e-book
-
Video
The Internet of Things gives us access to the data from millions of devices. But how does it work, and what can we do with all that data? Find out in this animated tutorial from IBM's Think Academy. For more information on IBM and the Internet of Things, please visit: http://www.ibm.com/IoT
- Subjects:
- Electronic and Information Engineering
- Keywords:
- Embedded computer systems Internet of things
- Resource Type:
- Video
-
Others
Arduino is the world’s leading open-source hardware and software ecosystem. The Company offers a range of software tools, hardware platforms and documentation enabling almost anybody to be creative with technology. Arduino is a popular tool for IoT product development as well as one of the most successful tools for STEM/STEAM education. Hundreds of thousands of designers, engineers, students, developers and makers around the world are using Arduino to innovate in music, games, toys, smart homes, farming, autonomous vehicles, and more.
- Keywords:
- Arduino (Programmable controller) Programmable controllers
- Resource Type:
- Others
-
Video
The ultimate Arduino tutorial for beginners. Learn how to choose an Arduino, dim LEDs, build a motor speed controller and more.
- Keywords:
- Programmable controllers Arduino (Programmable controller)
- Resource Type:
- Video
-
MOOC
Many natural and man-made structures can be modeled as assemblages of interconnected structural elements loaded along their axis (bars), in torsion (shafts) and in bending (beams). In this course you will learn to use equations for static equilibrium, geometric compatibility and constitutive material response to analyze structural assemblages. This course provides an introduction to behavior in which the shape of the structure is permanently changed by loading the material beyond its elastic limit (plasticity), and behavior in which the structural response changes over time (viscoelasticity). This is the second course in a 3-part series. In this series you will learn how mechanical engineers can use analytical methods and “back of the envelope” calculations to predict structural behavior. The three courses in the series are: Part 1 – 2.01x: Elements of Structures. (Elastic response of Structural Elements: Bars, Shafts, Beams). Fall Term Part 2 – 2.02.1x Mechanics of Deformable Structures: Part 1. (Assemblages of Elastic, Elastic-Plastic, and Viscoelastic Bars in axial loading). Spring Term Part 3 – 2.02.2x Mechanics of Deformable Structures: Part 2. (Assemblages of bars, shafts, and beams. Multi-axial Loading and Deformation. Energy Methods). Summer Term
- Subjects:
- Mechanical Engineering
- Keywords:
- Strength of materials Deformations (Mechanics)
- Resource Type:
- MOOC
-
MOOC
In autonomous vehicles such as self-driving cars, we find a number of interesting and challenging decision-making problems. Starting from the autonomous driving of a single vehicle, to the coordination among multiple vehicles. This course will teach you the fundamental mathematical model for many of these real-world problems. Key topics include Markov decision process, reinforcement learning and event-based methods as well as the modelling and solving of decision-making for autonomous systems. This course is aimed at learners with a bachelor's degree or engineers in the automotive industry who need to develop their knowledge in decision-making models for autonomous systems. Enhance your decision-making skills in automotive engineering by learning from Chalmers, one of the top engineering schools that distinguished through its close collaboration with industry.
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Decision making Automobiles -- Design construction Automated vehicles
- Resource Type:
- MOOC
-
MOOC
Electric powertrains are estimated to propel a large part of road vehicles in the future, due to their high efficiency and zero tailpipe emissions. But, the cost and weight of batteries and the time to charge them are arguments for the conventional powertrain in many vehicles. This makes it important for engineers working with vehicles to understand how both these powertrains work, and how to determine their performance and energy consumption for different type of vehicles and different ways of driving vehicles. This course is aimed at learners with a bachelor's degree or engineers in the automotive industry who need to develop their knowledge about electric powertrains. In this course, you will learn how electric and conventional combustion engine powertrains are built and how they work. You will learn methods to calculate their performance and energy consumption and how to simulate them in different driving cycles. You will also learn about the basic function, the main limits and the losses of: Combustion engines, Transmissions Electric machines, Power electronics Batteries. This knowledge will also be a base for understanding and analysing different types of hybrid vehicles, discussed in the course, Hybrid Vehicles. As a result of support from MathWorks, students will be granted access to MATLAB/Simulink for the duration of the course.
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Electric vehicles Automobiles -- Power trains
- Resource Type:
- MOOC
-
MOOC
The building industry is exploding with data sources that impact the energy performance of the built environment and health and well-being of occupants. Spreadsheets just don’t cut it anymore as the sole analytics tool for professionals in this field. Participating in mainstream data science courses might provide skills such as programming and statistics, however the applied context to buildings is missing, which is the most important part for beginners. This course focuses on the development of data science skills for professionals specifically in the built environment sector. It targets architects, engineers, construction and facilities managers with little or no previous programming experience. An introduction to data science skills is given in the context of the building life cycle phases. Participants will use large, open data sets from the design, construction, and operations of buildings to learn and practice data science techniques. Essentially this course is designed to add new tools and skills to supplement spreadsheets. Major technical topics include data loading, processing, visualization, and basic machine learning using the Python programming language, the Pandas data analytics and sci-kit learn machine learning libraries, and the web-based Colaboratory environment. In addition, the course will provide numerous learning paths for various built environment-related tasks to facilitate further growth.
- Subjects:
- Computing, Data Science and Artificial Intelligence
- Keywords:
- Python (Computer program language) City planning -- Statistical methods Information visualization
- Resource Type:
- MOOC
-
MOOC
In this course, we will introduce you to the fundamentals of sensor fusion for automotive systems. Key concepts involve Bayesian statistics and how to recursively estimate parameters of interest using a range of different sensors. The course is designed for students who seek to gain a solid understanding of Bayesian statistics and how to use it to fuse information from different sensors. We emphasize object positioning problems, but the studied techniques are applicable much more generally. The course contains a series of videos, quizzes and hand-on assignments where you get to implement many of the key techniques and build your own sensor fusion toolbox. The course is self-contained, but we highly recommend that you also take the course ChM015x: Multi-target Tracking for Automotive Systems. Together, these courses give you an excellent foundation to tackle advanced problems related to perceiving the traffic situation around an autonomous vehicle using observations from a variety of different sensors, such as, radar, lidar and camera.
- Subjects:
- Electrical Engineering, Mechanical Engineering, and Transportation
- Keywords:
- Automobiles -- Electronic equipment Automotive sensors
- Resource Type:
- MOOC