Search Constraints
Number of results to display per page
Results for:
Business Model Development
Remove constraint Business Model Development
1 - 5 of 5
Search Results
-
Video
The lecture commenced with a warm welcome and a brief introduction of the speaker by Prof. CHEN Qingyan, Director of PAIR. Prof. Zheng kickstarted his presentation by outlining the key driving forces of innovation and technologies. He shared that achieving success in the “from zero to one” and the subsequent “from one to N” innovation stages often come with the inevitable “valley of death” period, which spans over a decade. He then elaborated on how he and his team have spent 20 years of relentless effort overcoming the “valleys of death” in studying structural superlubricity, building a model for talent development, and entering into the next “one-to-N” development phase. Prof. Zheng also shared the key turning points in his academic and research journey and outlined how the X-Institute nurtures interdisciplinary research talents.
Event date: 21/11/2024
Speaker: Prof. ZHENG Quanshui (Academician of the Chinese Academy of Sciences, Founding Principal of X-Institute and Professor of Tsinghua Shenzhen International Graduate School, China)
Hosted by: PolyU Academy for Interdisciplinary Research
- Keywords:
- Scientists Technological innovations
- Resource Type:
- Video
-
Video
A rapidly expanding research area involves the development of routes to shape programmable three-dimensional (3D) structures with feature sizes in the mesoscopic range (that is, between tens of nanometres and hundreds of micrometres). A goal is to establish methods to control the properties of materials systems and the function of devices, through not only static architectures, but also morphable structures and shape-shifting processes. Soft matter equipped with responsive components can switch between designed shapes, but cannot support the types of dynamic morphing capabilities needed to reproduce continuous shape-shifting processes of interest for many applications. Challenges lie in the establishment of 3D assembly/fabrication techniques compatible with wide classes of materials and 3D geometries, and schemes to program target shapes after fabrication.
In this talk, Prof. HUANG Yonggang will introduce a mechanics-guided assembly approach that exploits controlled buckling for constructing complex 3D micro/nanostructures from patterned two-dimensional (2D) micro/nanoscale precursors that can be easily formed using established semiconductor technologies. This approach applies to a very broad set of materials (e.g., semiconductors, polymers, metals, and ceramics) and even their heterogeneous integration, over a wide range of length scales (e.g., from 100 nm to 10 cm). To allow realisation of 3D mesostructures that are capable of qualitative shape reconfiguration, Prof. HUANG devises a loading-path controlled strategy that relies on elastomer platforms deformed in different time sequences to elastically alter the 3D geometries of supported mesostructures via nonlinear buckling. Prof. HUANG will also introduce a recent work on shape programmable soft surface, constructed from a matrix of filamentary metal traces, driven by programmable, distributed electromagnetic forces that follow from the passage of electrical currents in the presence of a static magnetic field. Under the guidance of a mechanics model-based strategy to solve the inverse problem, the surface can morph into a wide range of 3D target shapes and shape-shifting processes. The compatibility of these approaches with the state-of-the-art fabrication/processing techniques, along with the versatile capabilities, allow transformation of diverse existing 2D microsystems into complex configurations, providing unusual design options in the development of novel functional devices.
Event date: 08/08/2024
Speaker: Prof. HUANG Yonggang (Northwestern University)
Hosted by: PolyU Academy for Interdisciplinary Research
- Keywords:
- Buckling (Mechanics) Materials science Elastomers Microstructure
- Resource Type:
- Video
-
Video
The lecture commenced with a welcome speech and speaker introduction by Prof. WANG Zuankai, Associate Vice President (Research and Innovation). In his presentation, Prof. Chen first gave a brief introduction to the United Nations’ 17 Sustainable Development Goals (SDGs) as well as the SDG monitoring practices in Mainland China. He pointed out that the Nation has adopted the high quality sustainable development concept, which emphasises harmonising the social, economic and environmental aspects in national development. Next, he elaborated on a pilot project that he led to measure Deqing County’s progress towards SDGs using geospatial and statistical information. The project was selected by the UN Department of Economic and Social Affairs as one of the first 16 good SDGs’ practices in 2020. After that, Prof. Chen shared that the achievement of sustainable development requires holistic and systematic research to build a digital governance system that can provide the basis for the scientific and orderly development of national territorial space. He also explained how territorial space sustainability studies can help unveil and analyse various patterns, such as the distributions of population, enterprises and public service facilities, and the relationships between them. To conclude, Prof. Chen introduced the national program on the development of the Realistic Geospatial Landscape Model (3dRGLm), which can generate digital description and representation of the real 3D geospatial spaces. This new geographic information system can support the Nation in achieving natural resources management and high quality sustainable development.
A question-and-answer session moderated by Prof. DING Xiaoli, Director of the Research Institute for Land and Space (RILS) and Prof. WENG Qihao, Associate Director of RILS, followed. The online and on-site audience engaged in a productive discussion with Prof. Chen.
Event date: 27/03/2024
Speaker: Prof. Jun CHEN (National Geomatics Center of China)
Hosted by: PolyU Academy for Interdisciplinary Research
- Keywords:
- Sustainable development Geospatial data China Sustainable Development Goals Geographic information systems
- Resource Type:
- Video
-
Others
Agent based modeling focuses on the individual active components of a system. This is in contrast to both the more abstract system dynamics approach, and the process-focused discrete event method. With agent based modeling, active entities, known as agents, must be identified and their behavior defined. They may be people, households, vehicles, equipment, products, or companies, whatever is relevant to the system. Connections between them are established, environmental variables set, and simulations run. The global dynamics of the system then emerge from the interactions of the many individual behaviors. AnyLogic combines professional discrete event, system dynamics, and agent based modeling in one platform for efficient, no compromise results. In our white paper, Multimethod Simulation Modeling for Business Applications, we investigate these three main simulation modeling approaches and construct a multimethod model example to illustrate the advantages of multimethod simulation modeling. Read the white paper and see why hybrid models are always a better choice!
- Course related:
- CE631 Simulation and IT Applications in Construction
- Subjects:
- Computing, Data Science and Artificial Intelligence and Business Information Technology
- Keywords:
- Multiagent systems Computer simulation System analysis -- Data processing
- Resource Type:
- Others
-
e-book
This collection of Concept Development Studies in Chemistry is presented to redirect the focus of learning. In each concept development study, a major chemical concept is developed and refined by analysis of experimental observations and careful reasoning. Each study begins with the definition of an initial Foundation of assumed knowledge, followed by a statement of questions which arise from the Foundation. Analysis of these questions is presented as a series of observations and logical deductions, followed by further questions. This detailed process is followed until the conceptual development of a model provides a reasonable answer to the stated questions.