Search Constraints
Number of results to display per page
Results for:
Financial Analysis and Control
Remove constraint Financial Analysis and Control
« Previous |
1 - 10 of 26
|
Next »
Search Results
-
Others
This case highlights a successful marketing strategy employed by a hotel in Hangzhou during the COVID-19 pandemic to attract business travelers. By conducting customer profiling and implementing promotional activities targeting the needs of the financial and consulting industries, the hotel achieved significant growth in room nights and bookings from the Boston Consulting Group. The strategy included offering additional benefits, promoting meeting facilities through the company's intranet, and providing personalized services to project team clients. The outcome was a 7.2-fold increase in production volume compared to the previous year. This case underscores the importance of timely market analysis, customization of promotional plans, and precise targeting to achieve successful marketing outcomes.
- Subjects:
- Marketing and Hotel, Travel and Tourism
- Keywords:
- Hotels -- Marketing COVID-19 (Disease) -- Economic aspect Target marketing Hospitality industry -- Marketing
- Resource Type:
- Others
-
MOOC
Operations management deals with operational planning and control issues, and is needed in all sectors of the society. One of the challenges to operations manager is how to make use of the available resources in the best way for meeting a certain objective. Quantitative approaches are inevitably needed in tackling many of such problems. Operations Research (OR) deals with problem formulation and application of analytical methods to assist in decision-making of operational problems in planning and control. The techniques of OR are useful quantitative tools to assist operations managers, and has a wide applicability in engineering, manufacturing, construction, financial and various service sectors. Operations Research is an applied mathematics subject and is also a course in many engineering and management programmes. This course is designed for both students learning OR and learners who are practitioners in their respective professionals. The mathematical procedures for the OR techniques are introduced in details in the examples provided in the course. This helps learners to master the methodology and the techniques and apply them to achieve their goals through active learning. This course introduces two prominent OR techniques and their extended topics. The Simplex Method for Linear Programming (LP) has been considered one of the top 10 algorithms of the 20th century. LP is an optimization technique for solving problems such as finding the optimal product mix, production plan, and shipment allocation, in order to maximize the profir or minimize the cost. The Critical Path Method (CPM) is a popular technique employed by project managers in scheduling project activities. Some extended topics of CPM are also introduced to deal with certain special situations in project management. In reality, many systems operate under stochastic environment and the operational problems cannot be solved by the known analytical methods. To this end, the simulation approach is introduced in the last chapter of this course. Simulation is a powerful technique for tackling OR problems under such situations.
- Subjects:
- Statistics and Research Methods
- Keywords:
- Operations research
- Resource Type:
- MOOC
-
MOOC
This course covers the fundamentals of advanced fluid mechanics: including its connections to continuum mechanics more broadly, hydrostatics, buoyancy and rigid body accelerations, inviscid flow, and the application of Bernoulli’s theorems, as well as applications of control volume analysis for more complex fluid flow problems of engineering interest. This course features lecture and demo videos, lecture concept checks, practice problems, and extensive problem sets.
This course is the first of a three-course sequence in incompressible fluid mechanics: Advanced Fluid Mechanics: Fundamentals, Advanced Fluid Mechanics: The Navier-Stokes Equations for Viscous Flows, and Advanced Fluid Mechanics: Potential Flows, Lift, Circulation & Boundary Layers. The series is based on material in MIT’s class 2.25 Advanced Fluid Mechanics, one of the most popular first-year graduate classes in MIT’s Mechanical Engineering Department. This series is designed to help people gain the ability to apply the governing equations, the principles of dimensional analysis and scaling theory to develop physically-based, approximate models of complex fluid physics phenomena. People who complete these three consecutive courses will be able to apply their knowledge to analyze and break down complex problems they may encounter in industrial and academic research settings.
`The material is of relevance to engineers and scientists across a wide range of mechanical chemical and process industries who must understand, analyze and optimize flow processes and fluids handling problems. Applications are drawn from hydraulics, aero & hydrodynamics as well as the chemical process industries.
- Subjects:
- Mechanical Engineering
- Keywords:
- Fluid mechanics
- Resource Type:
- MOOC
-
e-book
"Macroeconomics: Theory, Models, and Policy by D. Curtis and I. Irvine provides complete, concise coverage of introductory macroeconomics theory and policy. The text observes short-run macroeconomic performance, analysis, and policy motivated by the recessions of the early 1980s and 1990s, the financial crisis and recession of 2008-2009, and the prolonged recovery in most industrial countries. A traditional Aggregate Demand and Supply (AD-AS) model is introduced, and a basic modern AD-AS model is developed. Numerical examples, diagrams, and basic algebra are used in combination to illustrate and explain economic relationships. Students learn about: the importance of trade flows, consumption, and government budgets
- Subjects:
- Economics
- Keywords:
- Textbooks Macroeconomics
- Resource Type:
- e-book
-
e-book
"Principles of Macroeconomics is an adaptation of the text, Macroeconomics: Theory, Markets, and Policy by D. Curtis and I. Irvine, and presents a complete and concise examination of introductory macroeconomics theory and policy suitable for a first introductory course. Examples are domestic and international in their subject matter and are of the modern era -- financial markets, monetary and fiscal policies aimed at inflation and debt control, globalization and the importance of trade flows in economic structure, and concerns about slow growth and the risk of deflation, are included. This text is intended for a one-semester course, and can be used in a two-semester sequence with the companion text, Principles of Microeconomics. The three introductory chapters are common to both books"--BC Campus website.
- Subjects:
- Economics
- Keywords:
- Textbooks Macroeconomics
- Resource Type:
- e-book
-
MOOC
An overview of the ideas, methods, and institutions that permit human society to manage risks and foster enterprise. Emphasis on financially-savvy leadership skills. Description of practices today and analysis of prospects for the future. Introduction to risk management and behavioral finance principles to understand the real-world functioning of securities, insurance, and banking industries. The ultimate goal of this course is using such industries effectively and towards a better society.
- Course related:
- AF4323 International Finance
- Subjects:
- Finance
- Keywords:
- Foreign exchange market Futures market Capital market Stock exchanges
- Resource Type:
- MOOC
-
MOOC
We encounter signals and systems extensively in our day-to-day lives, from making a phone call, listening to a song, editing photos, manipulating audio files, using speech recognition softwares like Siri and Google now, to taking EEGs, ECGs and X-Ray images. Each of these involves gathering, storing, transmitting and processing information from the physical world. This course will equip you to deal with these tasks efficiently by learning the basic mathematical framework of signals and systems. This course is divided into two parts. In this part (EE210.1x), we will explore the various properties of signals and systems, characterization of Linear Shift Invariant Systems, convolution and Fourier Transform, while the next part (EE210.2x), will deal with the Sampling theorem, Z-Transform, discrete Fourier transform and Laplace transform. Ideas introduced in this course will be useful in understanding further electrical engineering courses which deal with control systems, communication systems, power systems, digital signal processing, statistical signal analysis and digital message transmission. The concepts taught in this course are also useful to students of other disciplines like mechanical, chemical, aerospace and other branches of engineering and science.
- Course related:
- EE3008A Linear Systems and Signal Processing
- Subjects:
- Electrical Engineering
- Keywords:
- Signal processing
- Resource Type:
- MOOC
-
MOOC
Solving the problems and challenges within the U.S. healthcare system requires a deep understanding of how the system works. Successful solutions and strategies must take into account the realities of the current system. This course explores the fundamentals of the U.S. healthcare system. It will introduce the principal institutions and participants in healthcare systems, explain what they do, and discuss the interactions between them. The course will cover physician practices, hospitals, pharmaceuticals, and insurance and financing arrangements. We will also discuss the challenges of healthcare cost management, quality of care, and access to care. While the course focuses on the U.S. healthcare system, we will also refer to healthcare systems in other developed countries.The Stanford University School of Medicine is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians. Visit the FAQs below for important information regarding 1) Date of original release and Termination or expiration date; 2) Accreditation and Credit Designation statements; 3) Disclosure of financial relationships for every person in control of activity content. In this MOOC, you will learn the major challenges of the U.S.healthcare system, Issues you may encounter in efforts to improve healthcare delivery and the healthcare system, and the key stakeholders are in the U.S. healthcare system.
- Course related:
- HSS1010 Freshman Seminar for Broad Discipline in Health Science
- Subjects:
- Management of Health Care Services
- Keywords:
- Medical care United States
- Resource Type:
- MOOC
-
e-book
This is a complete college textbook, including a detailed Table of Contents, seventeen Chapters (each with a set of relevant homework problems), a list of References, two Appendices, and a detailed Index. The book is intended to enable students to: Solve first-, second-, and higher-order, linear, time-invariant (LTI) ordinary differential equations (ODEs) with initial conditions and excitation, using both time-domain and Laplace-transform methods; Solve for the frequency response of an LTI system to periodic sinusoidal excitation and plot this response in standard form; Explain the role of the time constant in the response of a first-order LTI system, and the roles of natural frequency, damping ratio, and resonance in the response of a second-order LTI system; Derive and analyze mathematical models (ODEs) of low-order mechanical systems, both translational and rotational, that are composed of inertial elements, spring elements, and damping devices; Derive and analyze mathematical models (ODEs) of low-order electrical circuits composed of resistors, capacitors, inductors, and operational amplifiers; Derive (from ODEs) and manipulate Laplace transfer functions and block diagrams representing output-to-input relationships of discrete elements and of systems; Define and evaluate stability for an LTI system; Explain proportional, integral, and derivative types of feedback control for single-input, single-output (SISO), LTI systems; Sketch the locus of characteristic values, as a control parameter varies, for a feedback-controlled SISO, LTI system; Use MATLAB as a tool to study the time and frequency responses of LTI systems. The book's general organization is: Chapters 1-10 deal primarily with the ODEs and behaviors of first-order and second-order dynamic systems; Chapters 11 and 12 discuss the ODEs and behaviors of mechanical systems having two degrees of freedom, i.e., fourth-order systems; Chapters 13 and 14 introduce classical feedback control; Chapter 15 presents the basic features of proportional, integral, and derivative types of classical control; Chapters 16 and 17 discuss methods for analyzing the stability of classical control systems. The general minimum prerequisite for understanding this book is the intellectual maturity of a junior-level (third-year) college student in an accredited four-year engineering curriculum. A mathematical second-order system is represented in this book primarily by a single second-order ODE, not in the state-space form by a pair of coupled first-order ODEs. Similarly, a two-degrees-of-freedom (fourth-order) system is represented by two coupled second-order ODEs, not in the state-space form by four coupled first-order ODEs. The book does not use bond graph modeling, the general and powerful, but complicated, modern tool for analysis of complex, multidisciplinary dynamic systems. The homework problems at the ends of chapters are very important to the learning objectives, so the author attempted to compose problems of practical interest and to make the problem statements as clear, correct, and unambiguous as possible. A major focus of the book is computer calculation of system characteristics and responses and graphical display of results, with use of basic (not advanced) MATLAB commands and programs. The book includes many examples and homework problems relevant to aerospace engineering, among which are rolling dynamics of flight vehicles, spacecraft actuators, aerospace motion sensors, and aeroelasticity. There are also several examples and homework problems illustrating and validating theory by using measured data to identify first- and second-order system dynamic characteristics based on mathematical models (e.g., time constants and natural frequencies), and system basic properties (e.g., mass, stiffness, and damping). Applications of real and simulated experimental data appear in many homework problems. The book contains somewhat more material than can be covered during a single standard college semester, so an instructor who wishes to use this as a one-semester course textbook should not attempt to cover the entire book, but instead should cover only those parts that are most relevant to the course objectives.
- Keywords:
- Differential equations Engineering mathematics Differential equations Partial Textbooks
- Resource Type:
- e-book
-
e-book
This book was written for an experimental freshman course at the University of Colorado. The course is now an elective that the majority of our electrical and computer engineering students take in the second semester of their freshman year, just before their first circuits course. Our department decided to offer this course for several reasons: we wanted to pique student' interest in engineering by acquainting them with engineering teachers early in their university careers and by providing with exposure to the types of problems that electrical and computer engineers are asked to solve; we wanted students entering the electrical and computer engineering programs to be prepared in complex analysis, phasors, and linear algebra, topics that are of fundamental importance in our discipline; we wanted students to have an introduction to a software application tool, such as MATLAB, to complete their preparation for practical and efficient computing in their subsequent courses and in their professional careers; we wanted students to make early contact with advanced topics like vector graphics, filtering, and binary coding so that they would gain a more rounded picture of modern electrical and computer engineering. In order to introduce this course, we had to sacrifice a second semester of Pascal programming. We concluded that the sacrifice was worth making because we found that most of our students were prepared for high-level language computing after just one semester of programming. We believe engineering educators elsewhere are reaching similar conclusions about their own students and curriculums. We hope this book helps create a much needed dialogue about curriculum revision and that it leads to the development of similar introductory courses that encourage students to enter and practice our craft.Students electing to take this course have completed one semester of calculus, computer programming, chemistry, and humanities. Concurrently with this course, students take physics and a second semester of calculus, as well as a second semester in the humanities. By omitting the advanced topics marked by asterisks, we are able to cover Complex Numbers through Linear Algebra, plus two of the three remaining chapters. The book is organized so that the instructor can select any two of the three. If every chapter of this book is covered, including the advanced topics, then enough material exists for a two-semester course. The first three chapters of this book provide a fairly complete coverage of complex numbers, the functions e^x and e^jand phasors. Our department philosophy is that these topics must be understood if a student is to succeed in electrical and computer engineering. These three chapters may also be used as a supplement to a circuits course. A measured pace of presentation, taking between sixteen and eighteen lectures, is sufficient to cover all but the advanced sections in Complex Numbers through Phasors. The chapter on "linear algebra" is prerequisite for all subsequent chapters. We use eight to ten lectures to cover it. We devote twelve to sixteen lectures to cover topics from Vector Graphics through Binary Codes. (We assume a semester consisting of 42 lectures and three exams.) The chapter on vector graphics applies the linear algebra learned in the previous chapter to the problem of translating, scaling, and rotating images. "Filtering" introduces the student to basic ideas in averaging and filtering. The chapter on "Binary Codes" covers the rudiments of binary coding, including Huffman codes and Hamming codes. If the users of this book find "Vector Graphics" through "Binary Codes" too confining, we encourage them to supplement the essential material in "Complex Numbers" through "Linear Algebra" with their own course notes on additional topics. Within electrical and computer engineering there are endless possibilities. Practically any set of topics that can be taught with conviction and enthusiasm will whet the student's appetite. We encourage you to write to us or to our editor, Tom Robbins, about your ideas for additional topics. We would like to think that our book and its subsequent editions will have an open architecture that enables us to accommodate a wide range of student and faculty interests. Throughout this book we have used MATLAB programs to illustrate key ideas. MATLAB is an interactive, matrix-oriented language that is ideally suited to circuit analysis, linear systems, control theory, communications, linear algebra, and numerical analysis. MATLAB is rapidly becoming a standard software tool in universities and engineering companies. (For more information about MATLAB, return the attached card in the back of this book to The MathWorks, Inc.) MATLAB programs are designed to develop the student's ability to solve meaningful problems, compute, and plot in a high-level applications language. Our students get started in MATLAB by working through “An Introduction to MATLAB,” while seated at an IBM PC (or look-alike) or an Apple Macintosh. We also have them run through the demonstration programs in "Complex Numbers". Each week we give three classroom lectures and conduct a one-hour computer lab session. Students use this lab session to hone MATLAB skills, to write programs, or to conduct the numerical experiments that are given at the end of each chapter. We require that these experiments be carried out and then reported in a short lab report that contains (i) introduction, (ii) analytical computations, (iii) computer code, (iv) experimental results, and (v) conclusions. The quality of the numerical results and the computer graphics astonishes students. Solutions to the chapter problems are available from the publisher for instructors who adopt this text for classroom use. We wish to acknowledge our late colleague Richard Roberts, who encouraged us to publish this book, and Michael Lightner and Ruth Ravenel, who taught "Linear Algebra" and "Vector Graphics" and offered helpful suggestions on the manuscript. We thank C. T. Mullis for allowing us to use his notes on binary codes to guide our writing of "Binary Codes". We thank Cédric Demeure and Peter Massey for their contributions to the writing of "An Introduction to MATLAB" and "The Edix Editor". We thank Tom Robbins, our editor at Addison-Wesley, for his encouragement, patience, and many suggestions. We are especially grateful to Julie Fredlund, who composed this text through many drafts and improved it in many ways. We thank her for preparing an excellent manuscript for production.
- Subjects:
- Computing, Data Science and Artificial Intelligence and Electrical Engineering
- Keywords:
- MATLAB Textbooks Computer engineering Electrical engineering
- Resource Type:
- e-book
- « Previous
- Next »
- 1
- 2
- 3